МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ ТВЕРСКОЙ ОБЛАСТИ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ КИМРСКОГО МУНИЦИПАЛЬНОГО ОКРУГА

МОУ "Средняя школа №11 " "

УТВЕРКАТЕГО Директор Любатова НВ. Приказ № 2023 г.

РАБОЧАЯ ПРОГРАММА

«Химия. Базовый уровень»

Ступень обучения – среднее общее образование (10-11 классы)

Количество часов - 136 ч.

Учитель: Ермакова Н.А.

Рабочая программа по химии для 10-11 классов базового уровня составлена на основе:

- Федерального Государственного образовательного стандарта среднего общего образования;
- Учебного плана школы;
- Основной образовательной программы среднего общего образования МОУ «Средняя школа № 11»;
- Авторской программы среднего общего образования по химии Габриеляна О.С. (Рабочие программы к УМК О.С. Габриеляна. 10-11 классы. Учебно-методическое пособие. ФГОС /.- М.:Просвещение, 2020).
- учебников: 1) Химия. 10 класс. Базовый уровень: учебник для общеобразовательных учреждений/ О.С.Габриелян.-М.:Просвещение, 2020;
 - 2) Химия. 11 класс. Базовый уровень: учебник для общеобразовательных учреждений/ О.С.Габриелян.-М.:Просвещение, 2020.

Программа рассчитана на 136 часов (2 часа в неделю), из них в 10 классе – 68 часов, в 11 классе – 68 часов.

Планируемые результаты освоения учебного предмета «Химия»

Личностные:

- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
 - неприятие вредных привычек: курения, употребления алкоголя, наркотиков.
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности.

Метапредметные:

Регулятивные универсальные учебные действия

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

• Познавательные универсальные учебные действия

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи:
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выстраивать индивидуальную образовательную траекторию, учитывая
- ограничения со стороны других участников и ресурсные ограничения; менять и удерживать разные позиции в познавательной деятельности.

• Коммуникативные универсальные учебные действия

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

В результате изучения учебного предмета «Химия» общего образования: на уровне среднего

Выпускник на базовом уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между химией и другими естественными науками;
- раскрывать на примерах положения теории химического строения А.М. Бутлерова;
- понимать физический смысл Периодического закона Д.И. Менделеева и на его основе объяснять зависимость свойств химических элементов и образованных ими веществ от электронного строения атомов;
- объяснять причины многообразия веществ на основе общих представлений об их составе и строении;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;

- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- приводить примеры химических реакций, раскрывающих характерные свойства типичных представителей классов органических веществ с целью их идентификации и объяснения области применения;
- прогнозировать возможность протекания химических реакций на основе знаний о типах химической связи в молекулах реагентов и их реакционной способности;
- использовать знания о составе, строении и химических свойствах веществ для безопасного применения в практической деятельности;
- приводить примеры практического использования продуктов переработки нефти и природного газа, высокомолекулярных соединений (полиэтилена, синтетического каучука, ацетатного волокна);
- проводить опыты по распознаванию органических веществ: глицерина, уксусной кислоты, непредельных жиров, глюкозы, крахмала, белков в составе пищевых продуктов и косметических средств;
- владеть правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- приводить примеры гидролиза солей в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- приводить примеры химических реакций, раскрывающих общие химические свойства простых веществ – металлов и неметаллов;
- проводить расчеты на нахождение молекулярной формулы углеводорода по продуктам сгорания и по его относительной плотности и массовым долям элементов, входящих в его состав;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ; – критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научнопопулярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- представлять пути решения глобальных проблем, стоящих перед человечеством: экологических, энергетических, сырьевых, и роль химии в решении этих проблем.

Выпускник на базовом уровне получит возможность научиться:

- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- использовать методы научного познания при выполнении проектов и учебноисследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения:
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

Содержание учебного предмета

10 класс

Введение

Тема 1. Теория строения органических соединений

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Моделирование химических процессов и явлений, химический анализ и синтез как методы научного познания.

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Систематическая международная номенклатура и принципы образования названий органических соединений.

Демонстрации. Видеофрагменты, слайды с изображениями химической лаборатории, проведения химического эксперимента. Плавление, обугливание и горение органических веществ. Модели молекул представителей различных классов органических соединений.

Лабораторные опыты. 1. Определение элементного состава органических соединений. 2. Изготовление моделей молекул органических соединений.

Тема 2. Углеводороды и их природные источники

Алканы. Строение молекулы метана. Гомологический ряд алканов. Гомологи. Номенклатура. Изомерия углеродного скелета. Закономерности изменения физических свойств. Химические свойства (на примере метана и этана): реакции замещения (галогенирование), дегидрирования как способы получения важнейших соединений в органическом синтезе. Горение метана как один из основных источников тепла в промышленности и быту. Нахождение в природе и применение алканов. Понятие о циклоалканах.

Алкены. Строение молекулы этилена. Гомологический ряд алкенов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере этилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения функциональных производных углеводородов, горения. Полимеризация этилена как основное направление его использования. Полиэтилен как крупнотоннажный продукт химического производства. Применение этилена.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Полимеризация дивинила (бутадиена1,3) как способ получения синтетического каучука. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Применение каучука и резины.

Алкины. Строение молекулы ацетилена. Гомологический ряд алкинов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере ацетилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения полимеров и других полезных продуктов. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов. Применение ацетилена.

Арены. Бензол как представитель ароматических углеводородов. *Строение молекулы бензола*. Химические свойства: реакции замещения (галогенирование) как способ получения химических средств защиты растений, присоединения (гидрирование) как доказательство непредельного характера бензола. Реакция горения. Применение бензола.

Химия и энергетика. Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Состав нефти и ее переработка. Нефтепродукты. Октановое число бензина. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к раствору перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов.

Лабораторные опыты. 3. Обнаружение непредельных соединений в жидких нефтепродуктах. 4. Получение и свойства ацетилена. 5. Ознакомление с коллекцией «Нефть и продукты её переработки».

Практическая работа № 1 Определение качественного состава органических веществ.

Тема 3. Кислородсодержащие органические соединения

Спирты. Классификация, номенклатура, изомерия спиртов. Метанол и этанол как представители предельных одноатомных спиртов. Химические свойства (на примере метанола и этанола): взаимодействие с натрием как способ установления наличия гидроксогруппы, реакция с галогеноводородами как способ получения растворителей, дегидратация как способ получения этилена. Реакция горения: спирты как топливо. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Химические свойства: взаимодействие с натрием, гидроксидом натрия, бромом. Применение фенола.

Альдегиды. Метаналь (формальдегид) и этаналь (ацетальдегид) как представители предельных альдегидов. Качественные реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие с гидроксидом меди (II) и их применение для обнаружения предельных альдегидов в промышленных сточных водах. Токсичность альдегидов. Применение формальдегида и ацетальдегида.

Карбоновые кислоты. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Химические свойства (на примере уксусной кислоты): реакции с металлами, основными оксидами, основаниями и солями как подтверждение сходства с неорганическими кислотами. Реакция этерификации как способ получения сложных эфиров. Применение уксусной кислоты. Представление о высших карбоновых кислотах.

Сложные эфиры и жиры. Сложные эфиры как продукты взаимодействия карбоновых кислот со спиртами. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Распознавание растительных жиров на основании их непредельного характера. Применение жиров. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Мыла́ как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Нахождение углеводов в природе. Глюкоза как альдегидоспирт. Брожение глюкозы. Сахароза. *Гидролиз сахарозы*. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала и целлюлозы (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Применение и биологическая роль углеводов. Понятие об искусственных волокнах на примере ацетатного волокна.

Демонстрации. Окисление спирта в альдегид. Качественная реакция на многоатомные спирты. Коллекция «Каменный уголь». Коллекция продуктов коксохимического производства. Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Реакция «серебряного зеркала» альдегидов и глюкозы. Окисление альдегидов и глюкозы в кислоты с помощью гидроксида меди (II). Качественная реакция на крахмал. Коллекция эфирных масел. Коллекция пластмасс и изделий из них. Коллекция искусственных волокон и изделий из них.

Лабораторные опыты. 6. Свойства этилового спирта. 7. Свойства глицерина. 8. Свойства формальдегида. 9. Свойства уксусной кислоты. 10. Свойства жиров. 11. Сравнение свойств растворов мыла и стирального порошка. 12. Свойства глюкозы. 13. Свойства крахмала.

Практическая работа №2 Карбоновые кислоты **Практическая работа № 3.** Углеводы

Тема 4. Азотсодержащие органические соединения

Амины. Метиламин как представитель алифатических аминов и анилин – как ароматических. Основность аминов в сравнении с основными свойствами аммиака. Анилин и его свойства (взаимодействие с соляной кислотой и бромной водой). Получение анилина по реакции Зинина Н.Н. Применение анилина.

Аминокислоты и белки. Состав и номенклатура. Аминокислоты как амфотерные органические соединения. Пептидная связь.

Биологическое значение α-аминокислот. Области применения аминокислот. Белки как природные биополимеры. Состав и строение белков. Химические свойства белков: гидролиз, денатурация. Обнаружение белков при помощи качественных (цветных) реакций. Превращения белков пищи в организме. Биологические функции белков.

Нуклеиновые кислоты. Нуклеиновые кислоты как полинуклеотиды. Строение нуклеотида. РНК и ДНК в сравнении. Их роль в хранении и передаче наследственной информации.

Идентификация органических соединений. Генетическая связь между классами органических соединений. Типы химических реакций в органической химии.

Решение задач по органической химии. Решение задач на вывод формулы органических веществ по продуктам сгорания и массовым долям элементов.

Демонстрации. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с бромной водой. Доказательства наличия функциональных групп в растворах аминокислот. Растворение и осаждение белков. Цветные реакции белков. Горение птичьего пера и шерстяной нитки. Модель молекулы ДНК. Переходы: этанол \rightarrow этилен \rightarrow этиленгликоль \rightarrow этиленгликолят меди (II); этанол \rightarrow этаналь \rightarrow этановая кислота.

Лабораторные опыты. 14. Свойства белков.

Практическая работа №4. Решение экспериментальных задач по идентификации органических соединений

Тема 5. Искусственные и синтетические полимеры

Пластмассы и волокна. Полимеризация и поликонденсация как способы получения синтетических высокомолекулярных соединений. Получение искусственных высокомолекулярных соединений химической модификацией природных полимеров. Строение полимеров: линейное, пространственное, сетчатое.

Понятие о пластмассах. Термопластичные и термореактивные полимеры. Отдельные представители синтетических и искусственных полимеров: фенолформальдегидные смолы, поливинилхлорид, тефлон, целлулоид.

Понятие о химических волокнах. Натуральные, синтетические и искусственные волокна. Классификация и отдельные представители химических волокон: ацетатное (триацетатный шелк).

Демонстрации. Коллекция пластмасс, синтетических волокон и изделий из них. Разложение пероксида водорода с помощью природных объектов, содержащих каталазу (сырое мясо, сырой картофель). Коллекция СМС, содержащих энзимы. Испытание среды СМС индикаторной бумагой.

Лабораторные опыты. 15. Знакомство с образцами пластмасс, волокон и каучуков. **Практическая работа № 5** Распознавание пластмасс и волокон.

Тема 6. Биологически активные органические соединения

Химия и здоровье. Лекарства, ферменты, витамины, гормоны. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (курение, употребление алкоголя, наркомания). Рациональное питание. *Пищевые добавки. Основы пищевой химии*.

Демонстрации. Коллекция витаминных препаратов. Испытание среды раствора аскорбиновой кислоты индикаторной бумагой. Испытание аптечного препарата инсулина на белок.

Введение в общую химию

Тема 1. Периодический закон и строение атома

Первые попытки классификации химических элементов. Важнейшие понятия химии: атом, относительная атомная и молекулярная массы. Открытие Д. И. Менделеевым Периодического закона. Периодический закон в формулировке Д. И. Менделеева.

Периодическая система Д.И. Менделеева. Периодическая система Д. И. Менделеева как графическое отображение периодического закона. Различные варианты периодической системы. Периоды и группы. Значение периодического закона и периодической системы.

Строения атома. Атом — сложная частица. Открытие элементарных частици строения атома. Ядро атома: протоны и нейтроны. Изотопы. Изотопы водорода. Электроны. Электронная оболочка. Энергетический уровень. Орбитали: s p. d-орбитали. Распределение электронов по энергетическим уровням и орбиталям. Электронные конфигурации атомов химических элементов. Валентные возможности атомов химических элементов.

Периодический закон и строение атома. Современное понятие химического элемента. Современная формулировка периодического закона. Причина периодичности в изменении свойств химических элементов. Особенности заполнения энергетических уровней в электронных оболочках атомов переходных элементов. Электронные семейства элементов: *s- p-*элементы; *d- u f-*элементы.

Демонстрации. Различные формы Периодической системы Д. И. Менделеева.

Тема 2. Строение вещества

Ковалентная химическая связь. Понятие ковалентной связи. Общая электронная пара. Кратность ковалентной связи. Электроотрицательность. Перекрывание электронных орбиталей. σ - и π -связи. Ковалентная полярная и ковалентная неполярная химические связи. Обменный и донорноакцепторный механизмы образования ковалентной связи. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Ионная химическая связь. Катионы и анионы. Ионная связь и ее свойства. Ионная связь как крайний случай ковалентной полярной связи. Формульная единица вещества.

Относительность деления химических связей на типы.

Металлическая химическая связь. Общие физические свойства металлов. Зависимость электранногранности (металлор) спастиства. Уразы Правен Чергандро цвет на облагований объем газооб-Водородная химическая связь. Водородная связь, как особый случай межмолекулярного взаимодействия. Механизм ее образования и влияние на свойства веществ (на примере воды). Использование воды в быту и на производстве. Внутримолекулярная водородная связь и ее биологиче-

ская роль.

Типы кристаллических решеток. Кристаллическая решетка. Ионные, металлические, атомные и молекулярые кристаллические решетки. Аллотропия. Аморфные вещества, их отличительные свойства.

Чистые вещества смеси. Смеси и химические соединения. Гомогенные и гетерогенные смеси. Массовая и объемная доли компонентов в смеси. Массовая доля примесей. Решение задав на массовую долю примесей. Классификация веществ по степени их чистоты.

Дисперсные системы. Понятие дисперсной системы. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Коллоидные дисперсные системы. Золи и гели. Значение дисперсных систем в природе и жизни человека.

Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объема газов. Три агрегатных состояния воды. Дистилляция воды. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. 1. Определение свойств некоторых веществ на основе типа кристаллической решетки. 2. Ознакомление с коллекцией полимеров, пластмасс и волокон и изделий из

них. 3. Жёсткость воды. Устранение жёсткости воды. 4. Ознакомление с минеральными водами. 5. Ознакомление с дисперсными системами.

Практическая работа № 1. Получение и распознавание газов.

Тема 3. Химические реакции

Классификация химических реакций. Реакции, идущие без изменения состава веществ. Классификация по числу и составу реагирующих веществ и продуктов реакции. Реакции разложения, соединения, замещения и обмена неорганической химии. Реакции присоединения, отщепления, замещения и изомеризации в органической химии. Реакции полимеризации как частный случай реакций присоединения.

Тепловой эффект химических реакций. Экзо- и эндотермические реакции. Термохимические уравнения. Расчет количества теплоты по термохимическим уравнениям.

Скорость химических реакций. Понятие о скорости химических реакций, аналитическое выражение. Зависимость скорости реакции от концентрации, давления, температуры, природы реагирующих веществ, площади их соприкосновения. Закон действующих масс. Решение задач на химическую кинетику.

К а т а л и з. Катализаторы. Катализ. Гомогенный и гетерогенный катализ. Примеры каталитических процессов в промышленности, технике, быту. Ферменты и их отличия от неорганических катализаторов. Применение катализаторов и ферментов.

Химическое равновесие. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения на примере получения аммиака. Синтез аммиака в промышленности. Понятие об оптимальных условиях проведения технологического процесса.

Теория электролитической диссоциации. Электролиты и неэлектролиты. Степень электролитической диссоциации. Сильные и слабые электролиты. Уравнения электролитической диссоциации. Механизм диссоциации. Ступенчатая диссоциация. Водородный показатель. Реакции ионного обмена.

Окислительно-восстановительные реакции. Окислитель и восстановитель. Окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Общие свойства металлов. Химические свойства металлов как восстановителей. Взаимодействие металлов с неметаллами, водой, кислотами и растворами солей. Металлотермия.

Коррозия металлов как окислительно-восстановительный процесс. Способы защиты металлов от коррозии.

Общие свойства неметаллов. Химические свойства неметаллов как окислителей. Взаимодействие с металлами, водородом и другими неметаллами. Свойства неметаллов как восстановителей. Взаимодействие с простыми и сложными веществами-окислителями. Общая характеристика галогенов.

Электролиз растворов и расплавов электролитов на примере хлорида натрия. Электролитическое получение алюминия. Практическое значение электролиза. Гальванопластика гальваностегия.

Г и д р о л и з. Случаи гидролиза солей. Реакция среды (pH) растворах гидролизующихся солей. Гидролиз органических веществ, его значение

Демонстрации. Экзотермические и эндотермические химические реакции. Тепловые явления при растворении серной кислоты и аммиачной селитры. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью неорганических катализаторов (FeCl₂, KI) и природных объектов, содержащих каталазу (сырое мясо, картофель). Простейшие окислительновосстановительные реакции: взаимодействие цинка с соляной кислотой и железа с сульфатом меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

Лабораторные опыты. 13. Получение кислорода разложением пероксида водорода с помощью диоксида марганца и каталазы сырого картофеля. 14. Реакция замещения меди железом в растворе сульфата меди (II). 15. Получение водорода взаимодействием кислоты с цинком. 16. Ознакомление с коллекцией металлов. 17. Ознакомление с коллекцией неметаллов.

Практическая работа № 2. Гидролиз. Реакции ионного обмена.

Тема 4. Вещества и их свойства

Р а с т в о р ы. Растворы как гомогенные системы, состоящие из частиц растворителя, растворенного вещества и продуктов их взаимодействия. Растворение как физико-химический процесс. Массовая доля растворенного вещества. Типы растворов. Молярная концентрация вещества. Минеральные воды.

К и с л о т ы в свете теории электролитической диссоциации. Общие свойства неорганических и органических кислот. Условия течения реакций между электролитами до конца. Специфические свойства азотной, концентрированной серной, муравьиной кислот.

О с н о в а н и я в свете теории электролитической диссоциации, их классификация и общие свойства. Амины, как органические основания. Сравнение свойств аммиака, метиламина и анилина.

Соли в свете теории электролитической диссоциации, их классификация и общие свойства. Соли кислые и основные. Соли органических кислот. Мыла. Электрохимический ряд напряжений металлов и его использование для характеристики восстановительных свойств металлов. Гидролиз солей

3 а к л ю ч е н и е. Перспективы развития химической науки и химического производства. Химия и проблема охраны окружающей среды

Демонстрации. Испытание растворов электролитов и не-электролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Примеры реакций ионного обмена, идущих с образованием осадка, газа или воды. Химические свойства кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями (щелочами и нерастворимыми в воде), солями. Взаимодействие азотной кислоты с медью. Разбавление серной кислоты. Обугливание концентрированной серной кислотой сахарозы. Химические свойства щелочей: реакция нейтрализации, взаимодействие с кислотными оксидами, солями. Разложение нерастворимых в воде оснований при нагревании. Химические свойства солей: взаимодействие с металлами, кислотами, щелочами, с другими солями. Гидролиз карбида кальция. Изучение рН растворов гидролизующихся солей: карбонатов щелочных металлов, хлорида и ацетата аммония.

Лабораторные опыты. 6. Ознакомление с коллекцией кислот. 7.Получение и свойства нерастворимых оснований. 8. Ознакомление с коллекцией оснований. 9. Ознакомление с коллекцией минералов, содержащих соли. 10. Испытание растворов кислот, оснований и солей индикаторами. 11. Различные случаи гидролиза солей. 12. Гидролиз хлоридов и ацетатов щелочных металлов.

Практическая работа № 3 «Генетическая связь между классами неорганических и органических вешеств»

Тематическое планирование

10 класс

№ п/п		

темы	Название темы	Количество	Практические	Контрольные
	рабочей программы	часов	работы	работы
	Введение	1		
1	Теория строения органических соединений»	4		
2	Углеводороды и их природные источники	24	1	2
3	Кислородосодержащие органические вещества	21	2	1
4	Азотсодержащие органические соединения	9	1	1
5	Искусственные и синтетические полимеры	4	1	
6	Биологически активные органические соединения	5		
	ИТОГО	68	5	4

11 класс

№ п/п темы	Название раздела рабочей программы	Количество часов	Практические работы	Контрольные работы
	Введение	1		
1	Периодический закон и строение атома	8		1
2	Строение вещества	13	1	1
3	Химические реакции	24	1	1
4	Вещества и их свойства	22	1	1
	ИТОГО	68	3	4